2024 Annual Drinking Water Quality Report Consumer Confidence Report (CCR)

O & B Water Supply Corporation 254-985-2243 PWS ID# 0140020

Annual Water Quality Report for the Period of January 1 to December 31, 2024.

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

You can attend regularly scheduled public meetings. Meeting times and dates are posted at the O & B Water office, located at 11821 State Highway 53 Temple TX 76501 and on the website at www.obwatersupply.com. For more information regarding this report contact: O & B WSC office at 254-985-2243.

"Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (254) 985-2243."

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water Assessments

The source of drinking water used by O & B WSC is purchased surface water from Central Texas Water Supply Corporation (TX0140161); which is processed from Stillhouse Hollow Lake Reservoir and ground water pumped from a well in the Trinity Aquifer located at 8177 FM 438 Troy, TX 76579.

The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this Consumer Confident Report. For more information on source water assessments and protection efforts at our system contact the O & B WSC office at 254-985-2243.

Service Line Inventory

In 2024 we completed an EPA required inventory of all service lines in our system. The goal was to identify any service lines that contained lead pipes or fittings and we're happy to report that we did not locate any such lines being used in our water system. To access the inventory, please contact our office at 254-985-2243.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.tceq.state.tx.us/swav.Controller/index.jsp?wtrsrc=

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww2.tceq.texas.gov/DWW/

2024 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2024	24	13.6–37.7	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

^{&#}x27;* The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year'

Total Trihalomethanes (TTHM)	2024	36	27.4 – 37.8	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
				totai				

^{&#}x27;* The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year'

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2024	0.0355	0.0355 - 0.0355	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Cyanide	2023	30	30 - 30	200	200	ppb	N	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories.
Fluoride	2024	0.76	0.76 - 0.76	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2024	0.49	0.45 - 0.49	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Selenium	05/05/2021	3.7	3.7 – 3.7	50	50	Ppb	N	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	05/05/2021	1.5	1.5 - 1.5	0	5	pCi/L	N	Erosion of natural deposits.
Volatile Organic Contaminants	Collection Date	Highest level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Xylenes	2021	0.0005	0 – 0.0005	10	10	Ppm	N	Discharge from petroleum factories; Discharge from chemical factories.

Lead and Copper

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2022	1.3	1.3	0.22	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2022	0	15	1.2	0	ppb		Corrosion of household plumbing systems; Erosion of natural deposits.

Disinfection Data

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chlorine, Chloramines	2024	1.48	.70– 2.5	4	4	ppm	N	Water additive used to control microbes.

There were no violations for O & B Water Supply Corporation for the year 2024.

2024 Water Quality Test Results CENTRAL TEXAS WATER SUPPLY CORPORATION

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorite	2024	0.93	0.0118- 0.93	0.8	1	ppm	N	By-product of drinking water disinfection.
Haloacetic Acids (HAA5)	2024	32	11.6–66.5	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

^{1*} The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total Trihalomethanes (TTHM)	2024	66	17 – 159	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

^{1*} The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2024	0.0383	0.0343 - 0.0383	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Cyanide	2024	210	90 - 210	200	200	ppb	N	Discharge from plastic and fertilizer factories; Discharge of steel/ metal factories.
Fluoride	2024	0.3	0.19 – 0.72	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate (measured as Nitrogen)	2024	1	0.25 – 0.89	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/ photon emitters	2024	4.4	4.4-4.4	0	50	pCi/L*	N	Decay of natural and man-made deposits.

^{*}EPA considers 50 pCi/L to be the level of concern for beta particles.

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Atrazine	2024	.14	0.0 – 0.14	3	3	Ppb	N	Runoff from herbicide used on row crops.
Simazine	2024	0.16	0-0.16	4	4	Ppb	N	

Turbidity

	Level Detected	Limit (Treatment Technique)	Violation	Likely Source of Contamination
Highest single measurement	0.72 NTU	1 NTU	N	Soil runoff.
Lowest monthly % meeting limit	96%	0.3 NTU	N	Soil runoff.

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.

2024 Violations

Central Texas Water Supply Corporation

Chlorine Dioxide

Some infants and young children who drink water containing chlorine dioxide in excess of the MRDL could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorine dioxide in excess of the MRDL. Some people may experience anemia.

Violation Type	Violation Begin	Violation End	Violation Explanation
MONITORING, (DBP) (CHL. DIOXIDE)	06/01/2024		We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.

Chlorite

Some infants and young children who drink water containing chlorite in excess of the MCL could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorite in excess of the MCL. Some people may experience anemia.

Violation Type	Violation Begin	Violation End	Violation Explanation
MONITORING, ROUTINE (DBP), MAJOR	06/01/2024	- · ·	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.

Definitions and Abbreviations

Definitions and abbreviations: The following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: million fibers per liter (a measure of asbestos)

na: not applicable.

mrem: millirems per year (a measure of radiation absorbed by the body)

NTU: nephelometric turbidity units (a measure of turbidity)

pCi/L: picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Ppt: parts per trillion, or nanograms per liter (ng/L)

ppq: parts per quadrillion, or picograms per liter (pg/L)